Trigonométrie Exemples

Resolva para x 3csc(x)+4=0
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Placez le signe moins devant la fraction.
Étape 3
Prenez la cosécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la cosécante.
Étape 4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez .
Étape 5
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Étape 6
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez de .
Étape 6.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2
Remplacez par dans la formule pour la période.
Étape 7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.4
Divisez par .
Étape 8
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Ajoutez à pour déterminer l’angle positif.
Étape 8.2
Soustrayez de .
Étape 8.3
Indiquez les nouveaux angles.
Étape 9
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier