Trigonométrie Exemples

Résoudre sur l'intervalle tan(x/2)-1=0 , 0<x<2pi
,
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
La valeur exacte de est .
Étape 4
Multipliez les deux côtés de l’équation par .
Étape 5
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Annulez le facteur commun.
Étape 5.1.1.2
Réécrivez l’expression.
Étape 5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Factorisez à partir de .
Étape 5.2.1.2
Annulez le facteur commun.
Étape 5.2.1.3
Réécrivez l’expression.
Étape 6
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez les deux côtés de l’équation par .
Étape 7.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1.1
Annulez le facteur commun.
Étape 7.2.1.1.2
Réécrivez l’expression.
Étape 7.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.2.2.1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.2.1
Associez et .
Étape 7.2.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.2.1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.2.3.1
Factorisez à partir de .
Étape 7.2.2.1.2.3.2
Annulez le facteur commun.
Étape 7.2.2.1.2.3.3
Réécrivez l’expression.
Étape 7.2.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.3.1
Déplacez à gauche de .
Étape 7.2.2.1.3.2
Additionnez et .
Étape 8
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
La période de la fonction peut être calculée en utilisant .
Étape 8.2
Remplacez par dans la formule pour la période.
Étape 8.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 8.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.5
Déplacez à gauche de .
Étape 9
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 10
Consolidez les réponses.
, pour tout entier
Étape 11
Insérez pour et simplifiez pour voir si la solution est contenue dans .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Insérez pour .
Étape 11.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.1
Multipliez par .
Étape 11.2.1.2
Multipliez par .
Étape 11.2.2
Additionnez et .
Étape 11.3
L’intervalle contient .