Trigonométrie Exemples

Résoudre sur l'intervalle cos(x)=-( racine carrée de 3)/2 , [0,2pi]
,
Étape 1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
La valeur exacte de est .
Étape 3
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez et .
Étape 4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Soustrayez de .
Étape 5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2
Remplacez par dans la formule pour la période.
Étape 5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.4
Divisez par .
Étape 6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 7
Déterminez les valeurs de qui produisent une valeur sur l’intervalle .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Insérez pour et simplifiez pour voir si la solution est contenue dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Insérez pour .
Étape 7.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1.1
Multipliez par .
Étape 7.1.2.1.2
Multipliez par .
Étape 7.1.2.2
Additionnez et .
Étape 7.1.3
L’intervalle contient .
Étape 7.2
Insérez pour et simplifiez pour voir si la solution est contenue dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Insérez pour .
Étape 7.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.1
Multipliez par .
Étape 7.2.2.1.2
Multipliez par .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
L’intervalle contient .