Trigonométrie Exemples

Trouver les points d'intersection avec les axes des abscisses et des ordonnées y = logarithme de x+2
Étape 1
Déterminez les abscisses à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 1.2.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Réécrivez l’équation comme .
Étape 1.2.4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2.4.2.2
Élevez à la puissance .
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Déterminez les ordonnées à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Le logarithme de zéro est indéfini.
Étape 2.2.2
Supprimez les parenthèses.
Étape 2.2.3
L’équation ne peut pas être résolue car elle est indéfinie.
Étape 2.3
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4