Trigonométrie Exemples

Trouver les points d'intersection avec les axes des abscisses et des ordonnées y=-3sin(x+pi/2)
Étape 1
Déterminez les abscisses à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.3.1
Divisez par .
Étape 1.2.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 1.2.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
La valeur exacte de est .
Étape 1.2.5
Soustrayez des deux côtés de l’équation.
Étape 1.2.6
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 1.2.7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.1
Soustrayez de .
Étape 1.2.7.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.7.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.7.2.3
Associez et .
Étape 1.2.7.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.7.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.2.5.1
Déplacez à gauche de .
Étape 1.2.7.2.5.2
Soustrayez de .
Étape 1.2.8
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.8.1
La période de la fonction peut être calculée en utilisant .
Étape 1.2.8.2
Remplacez par dans la formule pour la période.
Étape 1.2.8.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.2.8.4
Divisez par .
Étape 1.2.9
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.9.1
Ajoutez à pour déterminer l’angle positif.
Étape 1.2.9.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.9.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.9.3.1
Associez et .
Étape 1.2.9.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.9.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.9.4.1
Multipliez par .
Étape 1.2.9.4.2
Soustrayez de .
Étape 1.2.9.5
Indiquez les nouveaux angles.
Étape 1.2.10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 1.2.11
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine : , pour tout entier
abscisse(s) à l’origine : , pour tout entier
Étape 2
Déterminez les ordonnées à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Supprimez les parenthèses.
Étape 2.2.2
Supprimez les parenthèses.
Étape 2.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Additionnez et .
Étape 2.2.3.2
La valeur exacte de est .
Étape 2.2.3.3
Multipliez par .
Étape 2.3
ordonnée(s) à l’origine en forme de point.
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine : , pour tout entier
ordonnée(s) à l’origine :
Étape 4