Entrer un problème...
Trigonométrie Exemples
Étape 1
Utilisez la définition de la tangente pour déterminer les côtés connus du triangle rectangle du cercle unité. Le quadrant détermine le signe sur chacune des valeurs.
Étape 2
Déterminez l’hypoténuse du triangle du cercle unité. Les côtés opposé et adjacent étant connus, utilisez le théorème de Pythagore pour déterminer le côté restant.
Étape 3
Remplacez les valeurs connues dans l’équation.
Étape 4
Étape 4.1
Élevez à la puissance .
Hypoténuse
Étape 4.2
Élevez à la puissance .
Hypoténuse
Étape 4.3
Additionnez et .
Hypoténuse
Hypoténuse
Étape 5
Étape 5.1
Utilisez la définition du sinus pour déterminer la valeur de .
Étape 5.2
Remplacez dans les valeurs connues.
Étape 5.3
Simplifiez la valeur de .
Étape 5.3.1
Placez le signe moins devant la fraction.
Étape 5.3.2
Multipliez par .
Étape 5.3.3
Associez et simplifiez le dénominateur.
Étape 5.3.3.1
Multipliez par .
Étape 5.3.3.2
Élevez à la puissance .
Étape 5.3.3.3
Élevez à la puissance .
Étape 5.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.3.5
Additionnez et .
Étape 5.3.3.6
Réécrivez comme .
Étape 5.3.3.6.1
Utilisez pour réécrire comme .
Étape 5.3.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.3.6.3
Associez et .
Étape 5.3.3.6.4
Annulez le facteur commun de .
Étape 5.3.3.6.4.1
Annulez le facteur commun.
Étape 5.3.3.6.4.2
Réécrivez l’expression.
Étape 5.3.3.6.5
Évaluez l’exposant.
Étape 5.3.4
Multipliez par .
Étape 5.3.5
Simplifiez l’expression.
Étape 5.3.5.1
Divisez par .
Étape 5.3.5.2
Multipliez par .
Étape 6
Étape 6.1
Utilisez la définition du cosinus pour déterminer la valeur de .
Étape 6.2
Remplacez dans les valeurs connues.
Étape 6.3
Simplifiez la valeur de .
Étape 6.3.1
Placez le signe moins devant la fraction.
Étape 6.3.2
Multipliez par .
Étape 6.3.3
Associez et simplifiez le dénominateur.
Étape 6.3.3.1
Multipliez par .
Étape 6.3.3.2
Élevez à la puissance .
Étape 6.3.3.3
Élevez à la puissance .
Étape 6.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.3.3.5
Additionnez et .
Étape 6.3.3.6
Réécrivez comme .
Étape 6.3.3.6.1
Utilisez pour réécrire comme .
Étape 6.3.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.3.3.6.3
Associez et .
Étape 6.3.3.6.4
Annulez le facteur commun de .
Étape 6.3.3.6.4.1
Annulez le facteur commun.
Étape 6.3.3.6.4.2
Réécrivez l’expression.
Étape 6.3.3.6.5
Évaluez l’exposant.
Étape 6.3.4
Évaluez la racine.
Étape 6.3.5
Multipliez par .
Étape 6.3.6
Divisez par .
Étape 6.3.7
Multipliez par .
Étape 7
Divisez par .
Étape 8
Étape 8.1
Utilisez la définition de la cotangente pour déterminer la valeur de .
Étape 8.2
Remplacez dans les valeurs connues.
Étape 8.3
Divisez par .
Étape 9
Étape 9.1
Utilisez la définition de la sécante pour déterminer la valeur de .
Étape 9.2
Remplacez dans les valeurs connues.
Étape 9.3
Placez le signe moins devant la fraction.
Étape 10
Étape 10.1
Utilisez la définition de la cosécante pour déterminer la valeur de .
Étape 10.2
Remplacez dans les valeurs connues.
Étape 10.3
Simplifiez la valeur de .
Étape 10.3.1
Placez le signe moins devant la fraction.
Étape 10.3.2
Évaluez la racine.
Étape 10.3.3
Divisez par .
Étape 10.3.4
Multipliez par .
Étape 11
C’est la solution à chaque valeur trigonométrique.