Entrer un problème...
Trigonométrie Exemples
Étape 1
Associez et .
Étape 2
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction cosécante, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Placez le signe moins devant la fraction.
Étape 4
Définissez l’intérieur de la fonction cosécante égal à .
Étape 5
Étape 5.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.2
Soustrayez de .
Étape 5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.2.1
Divisez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Étape 5.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.1.2
Divisez par .
Étape 6
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 7
Étape 7.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.2
Annulez le facteur commun de .
Étape 7.2.1
Annulez le facteur commun.
Étape 7.2.2
Divisez par .
Étape 8
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier. C’est la moitié de la période.
Étape 9
La cosécante n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : où est un entier
Étape 10