Trigonométrie Exemples

Trouver le domaine 1/( racine carrée de 2+sec(x))
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
La valeur exacte de est .
Étape 2.4
La fonction sécante est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 2.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.5.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Associez et .
Étape 2.5.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.5.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.1
Multipliez par .
Étape 2.5.3.2
Soustrayez de .
Étape 2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 2.6.2
Remplacez par dans la formule pour la période.
Étape 2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.6.4
Divisez par .
Étape 2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 3
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 4
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation de constructeur d’ensemble :
, pour tout entier
Étape 5