Trigonométrie Exemples

Trouver les points d'intersection avec les axes des abscisses et des ordonnées f(x)=(x+4)(x-2)(x+2)
Étape 1
Déterminez les abscisses à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Définissez égal à .
Étape 1.2.3.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Définissez égal à .
Étape 1.2.4.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Définissez égal à .
Étape 1.2.5.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Déterminez les ordonnées à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Supprimez les parenthèses.
Étape 2.2.2
Supprimez les parenthèses.
Étape 2.2.3
Supprimez les parenthèses.
Étape 2.2.4
Supprimez les parenthèses.
Étape 2.2.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Additionnez et .
Étape 2.2.5.2
Soustrayez de .
Étape 2.2.5.3
Multipliez par .
Étape 2.2.5.4
Additionnez et .
Étape 2.2.5.5
Multipliez par .
Étape 2.3
ordonnée(s) à l’origine en forme de point.
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4