Trigonométrie Exemples

Trouver les points d'intersection avec les axes des abscisses et des ordonnées y = logarithme de x+2
Étape 1
Déterminez les abscisses à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 1.2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Réécrivez l’équation comme .
Étape 1.2.3.2
Tout ce qui est élevé à la puissance est .
Étape 1.2.3.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.3.3.2
Soustrayez de .
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Déterminez les ordonnées à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Supprimez les parenthèses.
Étape 2.2.2
Supprimez les parenthèses.
Étape 2.2.3
Additionnez et .
Étape 2.3
ordonnée(s) à l’origine en forme de point.
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4