Trigonométrie Exemples

Resolva para x tan(x)+( racine carrée de 3)/(tan(x))<1+ racine carrée de 3
Étape 1
Remplacez par .
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Annulez le facteur commun.
Étape 3.2.1.2.2
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez par .
Étape 4
Résolvez l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez de sorte que soit du côté gauche de l’inégalité.
Étape 4.2
Soustrayez des deux côtés de l’inégalité.
Étape 4.3
Convertissez l’inégalité en une équation.
Étape 4.4
Soustrayez des deux côtés de l’équation.
Étape 4.5
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Remettez les termes dans l’ordre.
Étape 4.5.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.5.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.5.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4.6
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.7.1
Définissez égal à .
Étape 4.7.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.7.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.7.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.7.2.2.1
Divisez chaque terme dans par .
Étape 4.7.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.7.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.7.2.2.2.2
Divisez par .
Étape 4.7.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.7.2.2.3.1
Divisez par .
Étape 4.8
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.8.1
Définissez égal à .
Étape 4.8.2
Ajoutez aux deux côtés de l’équation.
Étape 4.9
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Remplacez par .
Étape 6
Définissez chacune des solutions à résoudre pour .
Étape 7
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 7.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
La valeur exacte de est .
Étape 7.3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.4.2.1
Associez et .
Étape 7.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.4.3.1
Déplacez à gauche de .
Étape 7.4.3.2
Additionnez et .
Étape 7.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
La période de la fonction peut être calculée en utilisant .
Étape 7.5.2
Remplacez par dans la formule pour la période.
Étape 7.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.5.4
Divisez par .
Étape 7.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 8
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 8.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
La valeur exacte de est .
Étape 8.3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 8.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1
Associez et .
Étape 8.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.3.1
Déplacez à gauche de .
Étape 8.4.3.2
Additionnez et .
Étape 8.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 8.5.1
La période de la fonction peut être calculée en utilisant .
Étape 8.5.2
Remplacez par dans la formule pour la période.
Étape 8.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 8.5.4
Divisez par .
Étape 8.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 9
Indiquez toutes les solutions.
, pour tout entier
Étape 10
Consolidez les solutions.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Consolidez et en .
, pour tout entier
Étape 10.2
Consolidez et en .
, pour tout entier
, pour tout entier
Étape 11
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 11.2
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 11.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
, pour tout entier
, pour tout entier
Étape 12
Utilisez chaque racine pour créer des intervalles de test.
Étape 13
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.1.2
Remplacez par dans l’inégalité d’origine.
Étape 13.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 13.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.2.2
Remplacez par dans l’inégalité d’origine.
Étape 13.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 13.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.3.2
Remplacez par dans l’inégalité d’origine.
Étape 13.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 13.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Vrai
Vrai
Vrai
Vrai
Vrai
Étape 14
La solution se compose de tous les intervalles vrais.
or or , for any integer
Étape 15
Associez les intervalles.
, pour tout entier
Étape 16