Trigonométrie Exemples

Resolva para x sin(11/20x+pi/12)=-1/2
Étape 1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
La valeur exacte de est .
Étape 4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Multipliez par .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Soustrayez de .
Étape 4.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Factorisez à partir de .
Étape 4.6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1
Factorisez à partir de .
Étape 4.6.2.2
Annulez le facteur commun.
Étape 4.6.2.3
Réécrivez l’expression.
Étape 4.7
Placez le signe moins devant la fraction.
Étape 5
Multipliez les deux côtés de l’équation par .
Étape 6
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1.1
Annulez le facteur commun.
Étape 6.1.1.1.2
Réécrivez l’expression.
Étape 6.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.2.1
Factorisez à partir de .
Étape 6.1.1.2.2
Annulez le facteur commun.
Étape 6.1.1.2.3
Réécrivez l’expression.
Étape 6.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.2.1.1.2
Factorisez à partir de .
Étape 6.2.1.1.3
Annulez le facteur commun.
Étape 6.2.1.1.4
Réécrivez l’expression.
Étape 6.2.1.2
Associez et .
Étape 7
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 8
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Soustrayez de .
Étape 8.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 8.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Soustrayez des deux côtés de l’équation.
Étape 8.3.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.3.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.3.1
Multipliez par .
Étape 8.3.1.3.2
Multipliez par .
Étape 8.3.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 8.3.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.5.1
Multipliez par .
Étape 8.3.1.5.2
Soustrayez de .
Étape 8.3.2
Multipliez les deux côtés de l’équation par .
Étape 8.3.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.1.1.1.1
Annulez le facteur commun.
Étape 8.3.3.1.1.1.2
Réécrivez l’expression.
Étape 8.3.3.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.1.1.2.1
Factorisez à partir de .
Étape 8.3.3.1.1.2.2
Annulez le facteur commun.
Étape 8.3.3.1.1.2.3
Réécrivez l’expression.
Étape 8.3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.2.1.1.1
Factorisez à partir de .
Étape 8.3.3.2.1.1.2
Factorisez à partir de .
Étape 8.3.3.2.1.1.3
Annulez le facteur commun.
Étape 8.3.3.2.1.1.4
Réécrivez l’expression.
Étape 8.3.3.2.1.2
Multipliez par .
Étape 8.3.3.2.1.3
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.3.2.1.3.1
Multipliez par .
Étape 8.3.3.2.1.3.2
Multipliez par .
Étape 9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 9.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 9.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 9.5.1
Associez et .
Étape 9.5.2
Multipliez par .
Étape 9.5.3
Associez et .
Étape 10
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Ajoutez à pour déterminer l’angle positif.
Étape 10.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.3
Soustrayez de .
Étape 10.4
Indiquez les nouveaux angles.
Étape 11
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier