Trigonométrie Exemples

Resolva para x cos(-2x)=-( racine carrée de 3)/2
Étape 1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
La valeur exacte de est .
Étape 3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.3.2
Placez le signe moins devant la fraction.
Étape 3.3.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Multipliez par .
Étape 3.3.3.2
Multipliez par .
Étape 4
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.2
Associez et .
Étape 5.1.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.4
Multipliez par .
Étape 5.1.5
Soustrayez de .
Étape 5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Divisez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.1.2
Divisez par .
Étape 5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.2.3.2
Placez le signe moins devant la fraction.
Étape 5.2.3.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.3.1
Multipliez par .
Étape 5.2.3.3.2
Multipliez par .
Étape 6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Annulez le facteur commun.
Étape 6.4.2
Divisez par .
Étape 7
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Ajoutez à pour déterminer l’angle positif.
Étape 7.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Associez et .
Étape 7.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Déplacez à gauche de .
Étape 7.4.2
Soustrayez de .
Étape 7.5
Ajoutez à pour déterminer l’angle positif.
Étape 7.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.7
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.7.1
Associez et .
Étape 7.7.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.8
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.8.1
Déplacez à gauche de .
Étape 7.8.2
Soustrayez de .
Étape 7.9
Indiquez les nouveaux angles.
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier