Trigonométrie Exemples

Resolva para x cot(x/2)=-1
Étape 1
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
La valeur exacte de est .
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Annulez le facteur commun.
Étape 4.1.1.2
Réécrivez l’expression.
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Factorisez à partir de .
Étape 4.2.1.2
Annulez le facteur commun.
Étape 4.2.1.3
Réécrivez l’expression.
Étape 5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Étape 6
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Ajoutez à .
Étape 6.2
L’angle résultant de est positif et coterminal avec .
Étape 6.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Multipliez les deux côtés de l’équation par .
Étape 6.3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1.1
Annulez le facteur commun.
Étape 6.3.2.1.1.2
Réécrivez l’expression.
Étape 6.3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.2.1.1
Factorisez à partir de .
Étape 6.3.2.2.1.2
Annulez le facteur commun.
Étape 6.3.2.2.1.3
Réécrivez l’expression.
Étape 7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2
Remplacez par dans la formule pour la période.
Étape 7.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 7.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.5
Déplacez à gauche de .
Étape 8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 9
Consolidez les réponses.
, pour tout entier