Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Réécrivez en termes de sinus et de cosinus.
Étape 1.2.2
Multipliez par la réciproque de la fraction pour diviser par .
Étape 1.2.3
Écrivez comme une fraction avec le dénominateur .
Étape 1.2.4
Annulez le facteur commun de .
Étape 1.2.4.1
Annulez le facteur commun.
Étape 1.2.4.2
Réécrivez l’expression.
Étape 1.3
Simplifiez le côté droit.
Étape 1.3.1
Annulez le facteur commun de .
Étape 1.3.1.1
Annulez le facteur commun.
Étape 1.3.1.2
Réécrivez l’expression.
Étape 2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 3
Étape 3.1
La valeur exacte de est .
Étape 4
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5
Soustrayez de .
Étape 6
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Divisez par .
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 8
Consolidez les réponses.
, pour tout entier