Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Déterminez où l’expression est indéfinie.
Étape 1.2
Ignorez le logarithme et étudiez la fonction rationnelle où est le degré du numérateur et est le degré du dénominateur.
1. Si , alors l’abscisse, , est l’asymptote horizontale.
2. Si , alors l’asymptote horizontale est la droite .
3. Si , alors il n’y a pas d’asymptote horizontale (il existe une asymptote oblique).
Étape 1.3
Déterminez et .
Étape 1.4
Comme , l’abscisse, , est l’asymptote horizontale.
Étape 1.5
Aucune asymptote oblique n’est présente pour les fonctions logarithmiques et trigonométriques.
Aucune asymptote oblique
Étape 1.6
C’est l’ensemble de toutes les asymptotes.
Asymptotes verticales :
Asymptotes horizontales :
Asymptotes verticales :
Asymptotes horizontales :
Étape 2
Étape 2.1
Remplacez la variable par dans l’expression.
Étape 2.2
Simplifiez le résultat.
Étape 2.2.1
Divisez par .
Étape 2.2.2
Un à n’importe quelle puissance est égal à un.
Étape 2.2.3
Le logarithme naturel de est .
Étape 2.2.4
La réponse finale est .
Étape 2.3
Convertissez en décimale.
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Développez en déplaçant hors du logarithme.
Étape 3.2.2
Annulez le facteur commun de .
Étape 3.2.2.1
Annulez le facteur commun.
Étape 3.2.2.2
Divisez par .
Étape 3.2.3
La réponse finale est .
Étape 3.3
Convertissez en décimale.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Réécrivez comme .
Étape 4.2.2
Simplifiez en déplaçant dans le logarithme.
Étape 4.2.3
Multipliez les exposants dans .
Étape 4.2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.3.2
Associez et .
Étape 4.2.4
La réponse finale est .
Étape 4.3
Convertissez en décimale.
Étape 5
La fonction logarithme peut être représentée graphiquement en utilisant l’asymptote verticale sur et les points .
Asymptote verticale :
Étape 6