Trigonométrie Exemples

Resolva para ? (1-cos(x))/(sin(x))+(sin(x))/(1-cos(x))=2csc(x)
Étape 1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Multipliez par .
Étape 1.1.3.2
Multipliez par .
Étape 1.1.3.3
Réorganisez les facteurs de .
Étape 1.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1.1
Appliquez la propriété distributive.
Étape 1.1.5.1.2
Appliquez la propriété distributive.
Étape 1.1.5.1.3
Appliquez la propriété distributive.
Étape 1.1.5.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.2.1.1
Multipliez par .
Étape 1.1.5.2.1.2
Multipliez par .
Étape 1.1.5.2.1.3
Multipliez par .
Étape 1.1.5.2.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.2.1.4.1
Multipliez par .
Étape 1.1.5.2.1.4.2
Multipliez par .
Étape 1.1.5.2.1.4.3
Élevez à la puissance .
Étape 1.1.5.2.1.4.4
Élevez à la puissance .
Étape 1.1.5.2.1.4.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.5.2.1.4.6
Additionnez et .
Étape 1.1.5.2.2
Soustrayez de .
Étape 1.1.5.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.3.1
Élevez à la puissance .
Étape 1.1.5.3.2
Élevez à la puissance .
Étape 1.1.5.3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.5.3.4
Additionnez et .
Étape 1.1.5.4
Réécrivez en forme factorisée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.4.1
Réorganisez les termes.
Étape 1.1.5.4.2
Appliquez l’identité pythagoricienne.
Étape 1.1.5.4.3
Additionnez et .
Étape 1.1.5.4.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.4.4.1
Factorisez à partir de .
Étape 1.1.5.4.4.2
Factorisez à partir de .
Étape 1.1.5.4.4.3
Factorisez à partir de .
Étape 1.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Annulez le facteur commun.
Étape 1.1.6.2
Réécrivez l’expression.
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 2.1.2
Associez et .
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Annulez le facteur commun.
Étape 4.2
Réécrivez l’expression.
Étape 5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Annulez le facteur commun.
Étape 5.2
Réécrivez l’expression.
Étape 6
Comme , l’équation sera toujours vraie pour toute valeur de .
Tous les nombres réels
Étape 7
Le résultat peut être affiché en différentes formes.
Tous les nombres réels
Notation d’intervalle :