Trigonométrie Exemples

Trouver les points d'intersection avec les axes des abscisses et des ordonnées y^2=9x
Étape 1
Déterminez les abscisses à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Supprimez les parenthèses.
Étape 1.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Divisez chaque terme dans par .
Étape 1.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1.1
Annulez le facteur commun.
Étape 1.2.3.2.1.2
Divisez par .
Étape 1.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.1
L’élévation de à toute puissance positive produit .
Étape 1.2.3.3.2
Divisez par .
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Déterminez les ordonnées à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Multipliez par .
Étape 2.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.3.3
Plus ou moins est .
Étape 2.3
ordonnée(s) à l’origine en forme de point.
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4