Entrer un problème...
Trigonométrie Exemples
Étape 1
Remplacez le par d’après l’identité .
Étape 2
Soustrayez de .
Étape 3
Remplacez par .
Étape 4
Étape 4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.2
Écrivez la forme factorisée avec ces entiers.
Étape 5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 7
Étape 7.1
Définissez égal à .
Étape 7.2
Soustrayez des deux côtés de l’équation.
Étape 8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 9
Remplacez par .
Étape 10
Définissez chacune des solutions à résoudre pour .
Étape 11
Étape 11.1
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 11.2
Simplifiez le côté droit.
Étape 11.2.1
La valeur exacte de est .
Étape 11.3
La fonction sécante est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 11.4
Soustrayez de .
Étape 11.5
Déterminez la période de .
Étape 11.5.1
La période de la fonction peut être calculée en utilisant .
Étape 11.5.2
Remplacez par dans la formule pour la période.
Étape 11.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.5.4
Divisez par .
Étape 11.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 12
Étape 12.1
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 12.2
Simplifiez le côté droit.
Étape 12.2.1
La valeur exacte de est .
Étape 12.3
La fonction sécante est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 12.4
Simplifiez .
Étape 12.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 12.4.2
Associez les fractions.
Étape 12.4.2.1
Associez et .
Étape 12.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.4.3
Simplifiez le numérateur.
Étape 12.4.3.1
Multipliez par .
Étape 12.4.3.2
Soustrayez de .
Étape 12.5
Déterminez la période de .
Étape 12.5.1
La période de la fonction peut être calculée en utilisant .
Étape 12.5.2
Remplacez par dans la formule pour la période.
Étape 12.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12.5.4
Divisez par .
Étape 12.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 13
Indiquez toutes les solutions.
, pour tout entier
Étape 14
Consolidez les réponses.
, pour tout entier