Trigonométrie Exemples

Resolva para b tan(b)=15/9
Étape 1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Étape 1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez .
Étape 4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Supprimez les parenthèses.
Étape 5.2
Supprimez les parenthèses.
Étape 5.3
Additionnez et .
Étape 6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Divisez par .
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 8
Consolidez et en .
, pour tout entier