Trigonométrie Exemples

Resolva para ? tan(x)^4-20tan(x)^2+64=0
Étape 1
Factorisez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Laissez . Remplacez toutes les occurrences de par .
Étape 1.3
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.3.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.4
Remplacez toutes les occurrences de par .
Étape 1.5
Réécrivez comme .
Étape 1.6
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.7
Réécrivez comme .
Étape 1.8
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.8.2
Supprimez les parenthèses inutiles.
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Évaluez .
Étape 3.2.4
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 3.2.5
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Ajoutez à .
Étape 3.2.5.2
L’angle résultant de est positif et coterminal avec .
Étape 3.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.6.2
Remplacez par dans la formule pour la période.
Étape 3.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.6.4
Divisez par .
Étape 3.2.7
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.7.1
Ajoutez à pour déterminer l’angle positif.
Étape 3.2.7.2
Remplacez par l’approximation décimale.
Étape 3.2.7.3
Soustrayez de .
Étape 3.2.7.4
Indiquez les nouveaux angles.
Étape 3.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Évaluez .
Étape 4.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 4.2.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Supprimez les parenthèses.
Étape 4.2.5.2
Supprimez les parenthèses.
Étape 4.2.5.3
Additionnez et .
Étape 4.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 4.2.6.2
Remplacez par dans la formule pour la période.
Étape 4.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.2.6.4
Divisez par .
Étape 4.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Évaluez .
Étape 5.2.4
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 5.2.5
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Ajoutez à .
Étape 5.2.5.2
L’angle résultant de est positif et coterminal avec .
Étape 5.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2.6.2
Remplacez par dans la formule pour la période.
Étape 5.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.2.6.4
Divisez par .
Étape 5.2.7
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.7.1
Ajoutez à pour déterminer l’angle positif.
Étape 5.2.7.2
Remplacez par l’approximation décimale.
Étape 5.2.7.3
Soustrayez de .
Étape 5.2.7.4
Indiquez les nouveaux angles.
Étape 5.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 6.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Évaluez .
Étape 6.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6.2.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1
Supprimez les parenthèses.
Étape 6.2.5.2
Supprimez les parenthèses.
Étape 6.2.5.3
Additionnez et .
Étape 6.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2.6.2
Remplacez par dans la formule pour la période.
Étape 6.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2.6.4
Divisez par .
Étape 6.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 8
Consolidez les réponses.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Consolidez et en .
, pour tout entier
Étape 8.2
Consolidez et en .
, pour tout entier
Étape 8.3
Consolidez et en .
, pour tout entier
Étape 8.4
Consolidez et en .
, pour tout entier
, pour tout entier