Entrer un problème...
Trigonométrie Exemples
,
Étape 1
Étape 1.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 1.2
Simplifiez le côté droit.
Étape 1.2.1
La valeur exacte de est .
Étape 1.3
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 1.4
Soustrayez de .
Étape 1.5
Déterminez la période de .
Étape 1.5.1
La période de la fonction peut être calculée en utilisant .
Étape 1.5.2
Remplacez par dans la formule pour la période.
Étape 1.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.5.4
Divisez par .
Étape 1.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 1.7
Consolidez les réponses.
, pour tout entier
Étape 1.8
Utilisez chaque racine pour créer des intervalles de test.
Étape 1.9
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Étape 1.9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 1.9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 1.9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 1.9.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 1.9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 1.9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 1.9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 1.9.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 1.9.3
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Étape 1.10
La solution se compose de tous les intervalles vrais.
, pour tout entier
, pour tout entier
Étape 2
Étape 2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2.2
Simplifiez le côté droit.
Étape 2.2.1
La valeur exacte de est .
Étape 2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.4
Simplifiez .
Étape 2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4.2
Associez les fractions.
Étape 2.4.2.1
Associez et .
Étape 2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.4.3
Simplifiez le numérateur.
Étape 2.4.3.1
Multipliez par .
Étape 2.4.3.2
Soustrayez de .
Étape 2.5
Déterminez la période de .
Étape 2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 2.5.2
Remplacez par dans la formule pour la période.
Étape 2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.5.4
Divisez par .
Étape 2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 2.7
Consolidez les réponses.
, pour tout entier
Étape 2.8
Utilisez chaque racine pour créer des intervalles de test.
Étape 2.9
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Étape 2.9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.1.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 2.9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 2.9.3
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Étape 2.10
La solution se compose de tous les intervalles vrais.
, pour tout entier
, pour tout entier
Étape 3
Déterminez l’intersection de et .
Aucune solution