Trigonométrie Exemples

Resolva para θ em Graus 9cos(theta)^2-24sin(theta)-10=-8sin(theta)+6
Étape 1
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Additionnez et .
Étape 2.2
Soustrayez de .
Étape 3
Remplacez le par d’après l’identité .
Étape 4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Multipliez par .
Étape 4.3
Multipliez par .
Étape 5
Soustrayez de .
Étape 6
Remettez le polynôme dans l’ordre.
Étape 7
Remplacez par .
Étape 8
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Factorisez à partir de .
Étape 8.1.2
Factorisez à partir de .
Étape 8.1.3
Réécrivez comme .
Étape 8.1.4
Factorisez à partir de .
Étape 8.1.5
Factorisez à partir de .
Étape 8.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1.1
Factorisez à partir de .
Étape 8.2.1.1.2
Réécrivez comme plus
Étape 8.2.1.1.3
Appliquez la propriété distributive.
Étape 8.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 8.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 8.2.2
Supprimez les parenthèses inutiles.
Étape 9
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 10
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Définissez égal à .
Étape 10.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Soustrayez des deux côtés de l’équation.
Étape 10.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Divisez chaque terme dans par .
Étape 10.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1.1
Annulez le facteur commun.
Étape 10.2.2.2.1.2
Divisez par .
Étape 10.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.3.1
Placez le signe moins devant la fraction.
Étape 11
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Définissez égal à .
Étape 11.2
Soustrayez des deux côtés de l’équation.
Étape 12
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 13
Remplacez par .
Étape 14
Définissez chacune des solutions à résoudre pour .
Étape 15
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 15.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Évaluez .
Étape 15.3
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 15.4
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 15.4.1
Soustrayez de .
Étape 15.4.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 15.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 15.5.1
La période de la fonction peut être calculée en utilisant .
Étape 15.5.2
Remplacez par dans la formule pour la période.
Étape 15.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 15.5.4
Divisez par .
Étape 15.6
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 15.6.1
Ajoutez à pour déterminer l’angle positif.
Étape 15.6.2
Soustrayez de .
Étape 15.6.3
Indiquez les nouveaux angles.
Étape 15.7
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
Étape 16
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 16.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1
La valeur exacte de est .
Étape 16.3
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 16.4
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 16.4.1
Soustrayez de .
Étape 16.4.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 16.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 16.5.1
La période de la fonction peut être calculée en utilisant .
Étape 16.5.2
Remplacez par dans la formule pour la période.
Étape 16.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 16.5.4
Divisez par .
Étape 16.6
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 16.6.1
Ajoutez à pour déterminer l’angle positif.
Étape 16.6.2
Soustrayez de .
Étape 16.6.3
Indiquez les nouveaux angles.
Étape 16.7
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
Étape 17
Indiquez toutes les solutions.
, pour tout entier
Étape 18
Consolidez et en .
, pour tout entier