Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Additionnez et .
Étape 2.2
Soustrayez de .
Étape 3
Étape 3.1
Remettez les termes dans l’ordre.
Étape 3.2
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme plus
Étape 3.2.3
Appliquez la propriété distributive.
Étape 3.3
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.4
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Étape 5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 5.2.2.1
Divisez chaque terme dans par .
Étape 5.2.2.2
Simplifiez le côté gauche.
Étape 5.2.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.2.1.2
Divisez par .
Étape 5.2.3
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 5.2.4
Simplifiez le côté droit.
Étape 5.2.4.1
Évaluez .
Étape 5.2.5
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5.2.6
Additionnez et .
Étape 5.2.7
Déterminez la période de .
Étape 5.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2.7.2
Remplacez par dans la formule pour la période.
Étape 5.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.2.7.4
Divisez par .
Étape 5.2.8
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 6.2.3
Simplifiez le côté droit.
Étape 6.2.3.1
Évaluez .
Étape 6.2.4
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 6.2.5
Simplifiez l’expression pour déterminer la deuxième solution.
Étape 6.2.5.1
Ajoutez à .
Étape 6.2.5.2
L’angle résultant de est positif et coterminal avec .
Étape 6.2.6
Déterminez la période de .
Étape 6.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2.6.2
Remplacez par dans la formule pour la période.
Étape 6.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2.6.4
Divisez par .
Étape 6.2.7
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Étape 6.2.7.1
Ajoutez à pour déterminer l’angle positif.
Étape 6.2.7.2
Soustrayez de .
Étape 6.2.7.3
Indiquez les nouveaux angles.
Étape 6.2.8
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 8
Consolidez les réponses.
, pour tout entier