Entrer un problème...
Trigonométrie Exemples
Étape 1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2
Étape 2.1
Évaluez .
Étape 3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 4
Soustrayez de .
Étape 5
Étape 5.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2
Remplacez par dans la formule pour la période.
Étape 5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.4
Divisez par .
Étape 6
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier