Entrer un problème...
Trigonométrie Exemples
Étape 1
Étape 1.1
Laissez . Remplacez toutes les occurrences de par .
Étape 1.2
Factorisez à l’aide de la méthode AC.
Étape 1.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Étape 3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Évaluez .
Étape 3.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 3.2.5
Additionnez et .
Étape 3.2.6
Déterminez la période de .
Étape 3.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.6.2
Remplacez par dans la formule pour la période.
Étape 3.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.6.4
Divisez par .
Étape 3.2.7
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
La valeur exacte de est .
Étape 4.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 4.2.5
Additionnez et .
Étape 4.2.6
Déterminez la période de .
Étape 4.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 4.2.6.2
Remplacez par dans la formule pour la période.
Étape 4.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.2.6.4
Divisez par .
Étape 4.2.7
La période de la fonction est si bien que les valeurs se répètent tous les degrés dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 6
Étape 6.1
Consolidez et en .
, pour tout entier
Étape 6.2
Consolidez et en .
, pour tout entier
, pour tout entier