Entrer un problème...
Trigonométrie Exemples
Étape 1
Appliquez l’identité pythagoricienne.
Étape 2
C’est la forme trigonométrique d’un nombre complexe où est le module et est l’angle créé sur le plan complexe.
Étape 3
Le module d’un nombre complexe est la distance par rapport à l’origine du plan complexe.
où
Étape 4
Remplacez les valeurs réelles de et .
Étape 5
Étape 5.1
L’élévation de à toute puissance positive produit .
Étape 5.2
Multipliez les exposants dans .
Étape 5.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.2
Multipliez par .
Étape 5.3
Additionnez et .
Étape 5.4
Réécrivez comme .
Étape 5.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6
L’angle du point sur le plan complexe est la tangente inverse de la partie complexe sur la partie réelle.
Étape 7
Remplacez les valeurs de et .