Entrer un problème...
Pré-calcul Exemples
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme où est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par en additionnant les exposants.
Étape 4.1.1.1
Multipliez par .
Étape 4.1.1.1.1
Élevez à la puissance .
Étape 4.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.1.2
Additionnez et .
Étape 4.1.2
Élevez à la puissance .
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Multipliez par .
Étape 4.1.5
Multipliez par .
Étape 4.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.1
Soustrayez de .
Étape 4.2.2
Soustrayez de .
Étape 4.2.3
Additionnez et .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.9
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.10
Simplifiez le polynôme quotient.
Étape 7
Étape 7.1
Factorisez à partir de .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Factorisez à partir de .
Étape 8
Étape 8.1
Factorisez à partir de .
Étape 8.1.1
Factorisez à partir de .
Étape 8.1.2
Factorisez à partir de .
Étape 8.1.3
Factorisez à partir de .
Étape 8.1.4
Factorisez à partir de .
Étape 8.1.5
Factorisez à partir de .
Étape 8.1.6
Factorisez à partir de .
Étape 8.1.7
Factorisez à partir de .
Étape 8.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 8.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.3
Factorisez.
Étape 8.3.1
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 8.3.2
Supprimez les parenthèses inutiles.
Étape 9
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 10
Étape 10.1
Définissez égal à .
Étape 10.2
Ajoutez aux deux côtés de l’équation.
Étape 11
Étape 11.1
Définissez égal à .
Étape 11.2
Résolvez pour .
Étape 11.2.1
Ajoutez aux deux côtés de l’équation.
Étape 11.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 11.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 11.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 13
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 14