Pré-calcul Exemples

Résoudre par substitution x^2+y^2=49 , y=x-3
,
Étape 1
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Remplacez toutes les occurrences de dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.1
Réécrivez comme .
Étape 1.2.1.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.2.1
Appliquez la propriété distributive.
Étape 1.2.1.1.2.2
Appliquez la propriété distributive.
Étape 1.2.1.1.2.3
Appliquez la propriété distributive.
Étape 1.2.1.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.3.1.1
Multipliez par .
Étape 1.2.1.1.3.1.2
Déplacez à gauche de .
Étape 1.2.1.1.3.1.3
Multipliez par .
Étape 1.2.1.1.3.2
Soustrayez de .
Étape 1.2.1.2
Additionnez et .
Étape 2
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez de .
Étape 2.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Factorisez à partir de .
Étape 2.3.2
Factorisez à partir de .
Étape 2.3.3
Factorisez à partir de .
Étape 2.3.4
Factorisez à partir de .
Étape 2.3.5
Factorisez à partir de .
Étape 2.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Divisez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Annulez le facteur commun.
Étape 2.4.2.1.2
Divisez par .
Étape 2.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Divisez par .
Étape 2.5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Additionnez et .
Étape 2.7.2
Multipliez par .
Étape 2.8
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.1
Élevez à la puissance .
Étape 2.8.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.2.1
Multipliez par .
Étape 2.8.1.2.2
Multipliez par .
Étape 2.8.1.3
Additionnez et .
Étape 2.8.2
Multipliez par .
Étape 2.8.3
Remplacez le par .
Étape 2.9
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.9.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.9.1.1
Élevez à la puissance .
Étape 2.9.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.9.1.2.1
Multipliez par .
Étape 2.9.1.2.2
Multipliez par .
Étape 2.9.1.3
Additionnez et .
Étape 2.9.2
Multipliez par .
Étape 2.9.3
Remplacez le par .
Étape 2.10
La réponse finale est la combinaison des deux solutions.
Étape 3
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez toutes les occurrences de dans par .
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.1.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Associez et .
Étape 3.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.1
Multipliez par .
Étape 3.2.1.3.2
Soustrayez de .
Étape 3.2.1.4
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.4.1
Réécrivez comme .
Étape 3.2.1.4.2
Factorisez à partir de .
Étape 3.2.1.4.3
Factorisez à partir de .
Étape 3.2.1.4.4
Placez le signe moins devant la fraction.
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.1.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Associez et .
Étape 4.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.3.1
Multipliez par .
Étape 4.2.1.3.2
Soustrayez de .
Étape 4.2.1.4
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.1
Réécrivez comme .
Étape 4.2.1.4.2
Factorisez à partir de .
Étape 4.2.1.4.3
Factorisez à partir de .
Étape 4.2.1.4.4
Placez le signe moins devant la fraction.
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7