Pré-calcul Exemples

Séparer à l'aide de la décomposition en éléments simples (6x^2+19x)/((x+4)(x^2+4))
Étape 1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.5
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Annulez le facteur commun.
Étape 1.5.1.2
Réécrivez l’expression.
Étape 1.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Annulez le facteur commun.
Étape 1.5.2.2
Divisez par .
Étape 1.5.3
Appliquez la propriété distributive.
Étape 1.5.4
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.5.4.2
Déplacez à gauche de .
Étape 1.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Déplacez .
Étape 1.6.2
Multipliez par .
Étape 1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1.1
Annulez le facteur commun.
Étape 1.7.1.2
Divisez par .
Étape 1.7.2
Appliquez la propriété distributive.
Étape 1.7.3
Déplacez à gauche de .
Étape 1.7.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.4.1
Annulez le facteur commun.
Étape 1.7.4.2
Divisez par .
Étape 1.7.5
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.5.1
Appliquez la propriété distributive.
Étape 1.7.5.2
Appliquez la propriété distributive.
Étape 1.7.5.3
Appliquez la propriété distributive.
Étape 1.7.6
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.6.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.6.1.1
Déplacez .
Étape 1.7.6.1.2
Multipliez par .
Étape 1.7.6.2
Déplacez à gauche de .
Étape 1.7.6.3
Déplacez à gauche de .
Étape 1.8
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
Déplacez .
Étape 1.8.2
Déplacez .
Étape 2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.4
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Réécrivez l’équation comme .
Étape 3.1.2
Soustrayez des deux côtés de l’équation.
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Remplacez toutes les occurrences de dans par .
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Multipliez par .
Étape 3.2.2.1.3
Multipliez par .
Étape 3.3
Remettez dans l’ordre et .
Étape 3.4
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Soustrayez des deux côtés de l’équation.
Étape 3.5
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Remplacez toutes les occurrences de dans par .
Étape 3.5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.1.1
Appliquez la propriété distributive.
Étape 3.5.2.1.1.2
Multipliez par .
Étape 3.5.2.1.1.3
Multipliez par .
Étape 3.5.2.1.2
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.2.1
Additionnez et .
Étape 3.5.2.1.2.2
Soustrayez de .
Étape 3.6
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Réécrivez l’équation comme .
Étape 3.6.2
Soustrayez des deux côtés de l’équation.
Étape 3.6.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.1
Divisez chaque terme dans par .
Étape 3.6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.2.1.1
Annulez le facteur commun.
Étape 3.6.3.2.1.2
Divisez par .
Étape 3.6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.3.1
Divisez par .
Étape 3.7
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Remplacez toutes les occurrences de dans par .
Étape 3.7.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.1.1
Multipliez par .
Étape 3.7.2.1.2
Soustrayez de .
Étape 3.7.3
Remplacez toutes les occurrences de dans par .
Étape 3.7.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.1
Multipliez par .
Étape 3.7.4.1.2
Additionnez et .
Étape 3.8
Indiquez toutes les solutions.
Étape 4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , et .
Étape 5
Multipliez par .