Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Factorisez la fraction.
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.1.1
Factorisez à partir de .
Étape 1.1.1.2
Factorisez à partir de .
Étape 1.1.1.3
Factorisez à partir de .
Étape 1.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 1.1.4
Réécrivez comme .
Étape 1.1.5
Factorisez.
Étape 1.1.5.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.1.5.2
Supprimez les parenthèses inutiles.
Étape 1.1.6
Associez les exposants.
Étape 1.1.6.1
Élevez à la puissance .
Étape 1.1.6.2
Élevez à la puissance .
Étape 1.1.6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.4
Additionnez et .
Étape 1.1.7
Réduisez l’expression en annulant les facteurs communs.
Étape 1.1.7.1
Annulez le facteur commun.
Étape 1.1.7.2
Réécrivez l’expression.
Étape 1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.5
Annulez le facteur commun de .
Étape 1.5.1
Annulez le facteur commun.
Étape 1.5.2
Divisez par .
Étape 1.6
Simplifiez chaque terme.
Étape 1.6.1
Annulez le facteur commun de .
Étape 1.6.1.1
Annulez le facteur commun.
Étape 1.6.1.2
Divisez par .
Étape 1.6.2
Annulez le facteur commun à et .
Étape 1.6.2.1
Factorisez à partir de .
Étape 1.6.2.2
Annulez les facteurs communs.
Étape 1.6.2.2.1
Multipliez par .
Étape 1.6.2.2.2
Annulez le facteur commun.
Étape 1.6.2.2.3
Réécrivez l’expression.
Étape 1.6.2.2.4
Divisez par .
Étape 1.6.3
Appliquez la propriété distributive.
Étape 1.6.4
Déplacez à gauche de .
Étape 1.7
Remettez dans l’ordre et .
Étape 2
Étape 2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.2.1
Remplacez toutes les occurrences de dans par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Multipliez par .
Étape 3.2.2.1.2
Additionnez et .
Étape 3.3
Réécrivez l’équation comme .
Étape 3.4
Résolvez le système d’équations.
Étape 3.5
Indiquez toutes les solutions.
Étape 4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .