Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Réécrivez l’équation comme .
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Placez le signe moins devant la fraction.
Étape 1.3
Ajoutez aux deux côtés de l’équation.
Étape 1.4
Remettez les termes dans l’ordre.
Étape 2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 3
Comme la valeur de est négative, la parabole ouvre vers le bas.
ouvre vers le bas
Étape 4
Déterminez le sommet .
Étape 5
Étape 5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 5.2
Remplacez la valeur de dans la fonction.
Étape 5.3
Simplifiez
Étape 5.3.1
Annulez le facteur commun à et .
Étape 5.3.1.1
Réécrivez comme .
Étape 5.3.1.2
Placez le signe moins devant la fraction.
Étape 5.3.2
Associez et .
Étape 5.3.3
Divisez par .
Étape 6
Étape 6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée y si la parabole ouvre vers le haut ou vers le bas.
Étape 6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 8
Étape 8.1
La directrice d’une parabole est la droite horizontale déterminée en soustrayant de la coordonnée y du sommet si la parabole ouvre vers le haut ou vers le bas.
Étape 8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 10