Pré-calcul Exemples

Trouver toutes les solutions complexes tan(x/2)=0
Étape 1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
La valeur exacte de est .
Étape 3
Définissez le numérateur égal à zéro.
Étape 4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés de l’équation par .
Étape 5.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Annulez le facteur commun.
Étape 5.2.1.1.2
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Additionnez et .
Étape 6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 6.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.5
Déplacez à gauche de .
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 8
Consolidez les réponses.
, pour tout entier