Entrer un problème...
Pré-calcul Exemples
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5
Étape 5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Ajoutez aux deux côtés de l’équation.
Étape 7
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 8
Étape 8.1
Réécrivez comme .
Étape 8.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 9
Étape 9.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 9.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 9.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 10
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 11
Consolidez les solutions.
Étape 12
Étape 12.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 12.2
Résolvez .
Étape 12.2.1
Ajoutez aux deux côtés de l’équation.
Étape 12.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 12.2.3
Simplifiez .
Étape 12.2.3.1
Réécrivez comme .
Étape 12.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 12.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 12.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 12.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 13
Utilisez chaque racine pour créer des intervalles de test.
Étape 14
Étape 14.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 14.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.1.2
Remplacez par dans l’inégalité d’origine.
Étape 14.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 14.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 14.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.2.2
Remplacez par dans l’inégalité d’origine.
Étape 14.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 14.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 14.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.3.2
Remplacez par dans l’inégalité d’origine.
Étape 14.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 14.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 14.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.4.2
Remplacez par dans l’inégalité d’origine.
Étape 14.4.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 14.5
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 14.5.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.5.2
Remplacez par dans l’inégalité d’origine.
Étape 14.5.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 14.6
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Faux
Vrai
Faux
Vrai
Faux
Étape 15
La solution se compose de tous les intervalles vrais.
ou
Étape 16
Convertissez l’inégalité en une notation d’intervalle.
Étape 17