Pré-calcul Exemples

Résoudre l'équation matricielle [[3,-2],[1,4]][[x],[y]]=[[2],[4]]
Étape 1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Deux matrices peuvent être multipliées si et seulement si le nombre de colonnes dans la première matrice est égal au nombre de lignes dans la deuxième matrice. Dans ce cas, la première matrice est et la deuxième matrice est .
Étape 1.2
Multipliez chaque ligne dans la première matrice par chaque colonne dans la deuxième matrice.
Étape 1.3
Simplifiez chaque élément de la matrice en multipliant toutes les expressions.
Étape 2
Écrivez comme un système linéaire d’équations.
Étape 3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Remplacez toutes les occurrences de dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.1.2
Multipliez par .
Étape 3.2.2.1.1.3
Multipliez par .
Étape 3.2.2.1.2
Soustrayez de .
Étape 3.3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.1.2
Soustrayez de .
Étape 3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Divisez chaque terme dans par .
Étape 3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1.1
Annulez le facteur commun.
Étape 3.3.2.2.1.2
Divisez par .
Étape 3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.3.1.1
Factorisez à partir de .
Étape 3.3.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.3.1.2.1
Factorisez à partir de .
Étape 3.3.2.3.1.2.2
Annulez le facteur commun.
Étape 3.3.2.3.1.2.3
Réécrivez l’expression.
Étape 3.4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Remplacez toutes les occurrences de dans par .
Étape 3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1.1.1.1
Associez et .
Étape 3.4.2.1.1.1.2
Multipliez par .
Étape 3.4.2.1.1.2
Placez le signe moins devant la fraction.
Étape 3.4.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.2.1.3
Associez et .
Étape 3.4.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.2.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1.5.1
Multipliez par .
Étape 3.4.2.1.5.2
Soustrayez de .
Étape 3.5
Indiquez toutes les solutions.