Pré-calcul Exemples

Transformer en un intervalle (x^2(4+x)(x-9))/((x+2)(x-7))>=0
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3
Plus ou moins est .
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Ajoutez aux deux côtés de l’équation.
Étape 6
Soustrayez des deux côtés de l’équation.
Étape 7
Ajoutez aux deux côtés de l’équation.
Étape 8
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 9
Consolidez les solutions.
Étape 10
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 10.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 10.2.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Définissez égal à .
Étape 10.2.2.2
Soustrayez des deux côtés de l’équation.
Étape 10.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.3.1
Définissez égal à .
Étape 10.2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 10.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 10.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 11
Utilisez chaque racine pour créer des intervalles de test.
Étape 12
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.1.2
Remplacez par dans l’inégalité d’origine.
Étape 12.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 12.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.2.2
Remplacez par dans l’inégalité d’origine.
Étape 12.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 12.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.3.2
Remplacez par dans l’inégalité d’origine.
Étape 12.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 12.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.4.2
Remplacez par dans l’inégalité d’origine.
Étape 12.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 12.5
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.5.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.5.2
Remplacez par dans l’inégalité d’origine.
Étape 12.5.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 12.6
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 12.6.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 12.6.2
Remplacez par dans l’inégalité d’origine.
Étape 12.6.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 12.7
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 13
La solution se compose de tous les intervalles vrais.
ou ou ou
Étape 14
Associez les intervalles.
Étape 15
Convertissez l’inégalité en une notation d’intervalle.
Étape 16