Pré-calcul Exemples

Trouver le domaine de définition et l'ensemble d'arrivée -1/3x=(y-2)^2
Étape 1
Réécrivez l’équation comme .
Étape 2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3
Associez et .
Étape 4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.4
Ajoutez aux deux côtés de l’équation.
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 6.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.1.2.2
Divisez par .
Étape 6.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.3.1
Divisez par .
Étape 6.2
Multipliez les deux côtés par .
Étape 6.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1.1.1
Annulez le facteur commun.
Étape 6.3.1.1.2
Réécrivez l’expression.
Étape 6.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Multipliez par .
Étape 7
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 8
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 9
Déterminez le domaine et la plage.
Domaine :
Plage :
Étape 10