Entrer un problème...
Pré-calcul Exemples
Étape 1
Divisez les deux côtés de l’équation par .
Étape 2
Étape 2.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 2.2
Étudiez la forme du sommet d’une parabole.
Étape 2.3
Déterminez la valeur de en utilisant la formule .
Étape 2.3.1
Remplacez les valeurs de et dans la formule .
Étape 2.3.2
Simplifiez le côté droit.
Étape 2.3.2.1
Annulez le facteur commun à et .
Étape 2.3.2.1.1
Réécrivez comme .
Étape 2.3.2.1.2
Annulez le facteur commun.
Étape 2.3.2.1.3
Réécrivez l’expression.
Étape 2.3.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.3.2.3
Annulez le facteur commun de .
Étape 2.3.2.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.3.2
Factorisez à partir de .
Étape 2.3.2.3.3
Annulez le facteur commun.
Étape 2.3.2.3.4
Réécrivez l’expression.
Étape 2.3.2.4
Placez le signe moins devant la fraction.
Étape 2.4
Déterminez la valeur de en utilisant la formule .
Étape 2.4.1
Remplacez les valeurs de , et dans la formule .
Étape 2.4.2
Simplifiez le côté droit.
Étape 2.4.2.1
Simplifiez chaque terme.
Étape 2.4.2.1.1
Simplifiez le numérateur.
Étape 2.4.2.1.1.1
Appliquez la règle de produit à .
Étape 2.4.2.1.1.2
Élevez à la puissance .
Étape 2.4.2.1.1.3
Appliquez la règle de produit à .
Étape 2.4.2.1.1.4
Élevez à la puissance .
Étape 2.4.2.1.1.5
Élevez à la puissance .
Étape 2.4.2.1.1.6
Multipliez par .
Étape 2.4.2.1.2
Multipliez par .
Étape 2.4.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.4.2.1.4
Annulez le facteur commun de .
Étape 2.4.2.1.4.1
Annulez le facteur commun.
Étape 2.4.2.1.4.2
Réécrivez l’expression.
Étape 2.4.2.2
Soustrayez de .
Étape 2.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 3
Remplacez par dans l’équation .
Étape 4
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 5
Étape 5.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 5.2
Étudiez la forme du sommet d’une parabole.
Étape 5.3
Déterminez la valeur de en utilisant la formule .
Étape 5.3.1
Remplacez les valeurs de et dans la formule .
Étape 5.3.2
Simplifiez le côté droit.
Étape 5.3.2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.3.2.2
Annulez le facteur commun de .
Étape 5.3.2.2.1
Factorisez à partir de .
Étape 5.3.2.2.2
Factorisez à partir de .
Étape 5.3.2.2.3
Annulez le facteur commun.
Étape 5.3.2.2.4
Réécrivez l’expression.
Étape 5.4
Déterminez la valeur de en utilisant la formule .
Étape 5.4.1
Remplacez les valeurs de , et dans la formule .
Étape 5.4.2
Simplifiez le côté droit.
Étape 5.4.2.1
Simplifiez chaque terme.
Étape 5.4.2.1.1
Simplifiez le numérateur.
Étape 5.4.2.1.1.1
Appliquez la règle de produit à .
Étape 5.4.2.1.1.2
Élevez à la puissance .
Étape 5.4.2.1.1.3
Élevez à la puissance .
Étape 5.4.2.1.2
Multipliez par .
Étape 5.4.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.4.2.1.4
Annulez le facteur commun de .
Étape 5.4.2.1.4.1
Factorisez à partir de .
Étape 5.4.2.1.4.2
Annulez le facteur commun.
Étape 5.4.2.1.4.3
Réécrivez l’expression.
Étape 5.4.2.2
Soustrayez de .
Étape 5.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 6
Remplacez par dans l’équation .
Étape 7
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 8
Étape 8.1
Associez les numérateurs sur le dénominateur commun.
Étape 8.2
Simplifiez l’expression.
Étape 8.2.1
Additionnez et .
Étape 8.2.2
Additionnez et .
Étape 8.2.3
Divisez par .
Étape 9
C’est la forme d’un cercle. Utilisez cette forme pour déterminer le centre et le rayon du cercle.
Étape 10
Faites correspondre les valeurs dans ce cercle avec celles de la forme normalisée. La variable représente le rayon du cercle, représente le décalage x par rapport à l’origine et représente le décalage y par rapport à l’origine.
Étape 11
Le centre du cercle se trouve sur .
Centre :
Étape 12
Ces valeurs représentent les valeurs importantes pour représenter graphiquement et analyser un cercle.
Centre :
Rayon :
Étape 13