Pré-calcul Exemples

Trouver les asymptotes y=tan(3/4x)
Étape 1
Associez et .
Étape 2
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction tangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.1.2
Réécrivez l’expression.
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Factorisez à partir de .
Étape 3.2.1.1.2.2
Annulez le facteur commun.
Étape 3.2.1.1.2.3
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.1.2
Factorisez à partir de .
Étape 3.2.2.1.1.3
Annulez le facteur commun.
Étape 3.2.2.1.1.4
Réécrivez l’expression.
Étape 3.2.2.1.2
Associez et .
Étape 4
Définissez l’intérieur de la fonction tangente égal à .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés de l’équation par .
Étape 5.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1.1
Annulez le facteur commun.
Étape 5.2.1.1.1.2
Réécrivez l’expression.
Étape 5.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.2.1
Factorisez à partir de .
Étape 5.2.1.1.2.2
Annulez le facteur commun.
Étape 5.2.1.1.2.3
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1.1
Factorisez à partir de .
Étape 5.2.2.1.1.2
Annulez le facteur commun.
Étape 5.2.2.1.1.3
Réécrivez l’expression.
Étape 5.2.2.1.2
Associez et .
Étape 6
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 7
Déterminez la période pour déterminer où les asymptotes verticales existent.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 7.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.3
Associez et .
Étape 7.4
Déplacez à gauche de .
Étape 8
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 9
La tangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Étape 10