Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Élevez à la puissance .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.1.6
Factorisez à partir de .
Étape 2.1.2
Factorisez en utilisant la règle du carré parfait.
Étape 2.1.2.1
Réécrivez comme .
Étape 2.1.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.1.2.3
Réécrivez le polynôme.
Étape 2.1.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Définissez le égal à .
Étape 2.4.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4