Pré-calcul Exemples

Tracer f(theta)=3sin(2theta)
Étape 1
Utilisez la forme afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
Étape 2
Déterminez l’amplitude .
Amplitude :
Étape 3
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2
Remplacez par dans la formule pour la période.
Étape 3.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Annulez le facteur commun.
Étape 3.4.2
Divisez par .
Étape 4
Déterminez le déphasage en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le déphasage de la fonction peut être calculé à partir de .
Déphasage :
Étape 4.2
Remplacez les valeurs de et dans l’équation pour le déphasage.
Déphasage :
Étape 4.3
Divisez par .
Déphasage :
Déphasage :
Étape 5
Indiquez les propriétés de la fonction trigonométrique.
Amplitude :
Période :
Déphasage : Aucune
Décalage vertical : Aucune
Étape 6
Sélectionnez quelques points à représenter graphiquement.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Déterminez le point sur .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Remplacez la variable par dans l’expression.
Étape 6.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
Multipliez par .
Étape 6.1.2.2
La valeur exacte de est .
Étape 6.1.2.3
Multipliez par .
Étape 6.1.2.4
La réponse finale est .
Étape 6.2
Déterminez le point sur .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Remplacez la variable par dans l’expression.
Étape 6.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Factorisez à partir de .
Étape 6.2.2.1.2
Annulez le facteur commun.
Étape 6.2.2.1.3
Réécrivez l’expression.
Étape 6.2.2.2
La valeur exacte de est .
Étape 6.2.2.3
Multipliez par .
Étape 6.2.2.4
La réponse finale est .
Étape 6.3
Déterminez le point sur .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Remplacez la variable par dans l’expression.
Étape 6.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Annulez le facteur commun.
Étape 6.3.2.1.2
Réécrivez l’expression.
Étape 6.3.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 6.3.2.3
La valeur exacte de est .
Étape 6.3.2.4
Multipliez par .
Étape 6.3.2.5
La réponse finale est .
Étape 6.4
Déterminez le point sur .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Remplacez la variable par dans l’expression.
Étape 6.4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1.1
Factorisez à partir de .
Étape 6.4.2.1.2
Annulez le facteur commun.
Étape 6.4.2.1.3
Réécrivez l’expression.
Étape 6.4.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 6.4.2.3
La valeur exacte de est .
Étape 6.4.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.1
Multipliez par .
Étape 6.4.2.4.2
Multipliez par .
Étape 6.4.2.5
La réponse finale est .
Étape 6.5
Déterminez le point sur .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Remplacez la variable par dans l’expression.
Étape 6.5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 6.5.2.2
La valeur exacte de est .
Étape 6.5.2.3
Multipliez par .
Étape 6.5.2.4
La réponse finale est .
Étape 6.6
Indiquez les points dans une table.
Étape 7
La fonction trigonométrique peut être représentée graphiquement en utilisant l’amplitude, la période, le déphasage, le décalage vertical et les points.
Amplitude :
Période :
Déphasage : Aucune
Décalage vertical : Aucune
Étape 8