Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 1.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 1.3
Simplifiez
Étape 1.3.1
Simplifiez le numérateur.
Étape 1.3.1.1
Élevez à la puissance .
Étape 1.3.1.2
Multipliez par .
Étape 1.3.1.3
Appliquez la propriété distributive.
Étape 1.3.1.4
Simplifiez
Étape 1.3.1.4.1
Multipliez par .
Étape 1.3.1.4.2
Multipliez par .
Étape 1.3.1.4.3
Multipliez par .
Étape 1.3.1.5
Soustrayez de .
Étape 1.3.1.6
Factorisez à partir de .
Étape 1.3.1.6.1
Factorisez à partir de .
Étape 1.3.1.6.2
Factorisez à partir de .
Étape 1.3.1.6.3
Factorisez à partir de .
Étape 1.3.1.6.4
Factorisez à partir de .
Étape 1.3.1.6.5
Factorisez à partir de .
Étape 1.3.2
Multipliez par .
Étape 1.4
Simplifiez l’expression pour résoudre la partie du .
Étape 1.4.1
Simplifiez le numérateur.
Étape 1.4.1.1
Élevez à la puissance .
Étape 1.4.1.2
Multipliez par .
Étape 1.4.1.3
Appliquez la propriété distributive.
Étape 1.4.1.4
Simplifiez
Étape 1.4.1.4.1
Multipliez par .
Étape 1.4.1.4.2
Multipliez par .
Étape 1.4.1.4.3
Multipliez par .
Étape 1.4.1.5
Soustrayez de .
Étape 1.4.1.6
Factorisez à partir de .
Étape 1.4.1.6.1
Factorisez à partir de .
Étape 1.4.1.6.2
Factorisez à partir de .
Étape 1.4.1.6.3
Factorisez à partir de .
Étape 1.4.1.6.4
Factorisez à partir de .
Étape 1.4.1.6.5
Factorisez à partir de .
Étape 1.4.2
Multipliez par .
Étape 1.4.3
Remplacez le par .
Étape 1.4.4
Réécrivez comme .
Étape 1.4.5
Factorisez à partir de .
Étape 1.4.6
Factorisez à partir de .
Étape 1.4.7
Placez le signe moins devant la fraction.
Étape 1.5
Simplifiez l’expression pour résoudre la partie du .
Étape 1.5.1
Simplifiez le numérateur.
Étape 1.5.1.1
Élevez à la puissance .
Étape 1.5.1.2
Multipliez par .
Étape 1.5.1.3
Appliquez la propriété distributive.
Étape 1.5.1.4
Simplifiez
Étape 1.5.1.4.1
Multipliez par .
Étape 1.5.1.4.2
Multipliez par .
Étape 1.5.1.4.3
Multipliez par .
Étape 1.5.1.5
Soustrayez de .
Étape 1.5.1.6
Factorisez à partir de .
Étape 1.5.1.6.1
Factorisez à partir de .
Étape 1.5.1.6.2
Factorisez à partir de .
Étape 1.5.1.6.3
Factorisez à partir de .
Étape 1.5.1.6.4
Factorisez à partir de .
Étape 1.5.1.6.5
Factorisez à partir de .
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Remplacez le par .
Étape 1.5.4
Factorisez à partir de .
Étape 1.5.4.1
Remettez dans l’ordre et .
Étape 1.5.4.2
Factorisez à partir de .
Étape 1.5.4.3
Réécrivez comme .
Étape 1.5.4.4
Factorisez à partir de .
Étape 1.5.5
Placez le signe moins devant la fraction.
Étape 1.6
La réponse finale est la combinaison des deux solutions.
Étape 2
Pour écrire un polynôme en forme normalisée, simplifiez puis classez les termes par ordre décroissant.
Étape 3
Divisez la fraction en deux fractions.
Étape 4
Étape 4.1
Annulez le facteur commun à et .
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Annulez les facteurs communs.
Étape 4.1.2.1
Factorisez à partir de .
Étape 4.1.2.2
Annulez le facteur commun.
Étape 4.1.2.3
Réécrivez l’expression.
Étape 4.2
Placez le signe moins devant la fraction.
Étape 5
Appliquez la propriété distributive.
Étape 6
Divisez la fraction en deux fractions.
Étape 7
Étape 7.1
Factorisez à partir de .
Étape 7.2
Annulez les facteurs communs.
Étape 7.2.1
Factorisez à partir de .
Étape 7.2.2
Annulez le facteur commun.
Étape 7.2.3
Réécrivez l’expression.
Étape 8
Appliquez la propriété distributive.
Étape 9
Remettez les termes dans l’ordre.
Étape 10
Supprimez les parenthèses.
Étape 11