Pré-calcul Exemples

Trouver la valeur maximale/minimale y=4sin(x)
Step 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Comme est constant par rapport à , la dérivée de par rapport à est .
La dérivée de par rapport à est .
Step 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Comme est constant par rapport à , la dérivée de par rapport à est .
La dérivée de par rapport à est .
Multipliez par .
Step 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Step 4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Divisez chaque terme dans par .
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Annulez le facteur commun.
Divisez par .
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Divisez par .
Step 5
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Step 6
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
La valeur exacte de est .
Step 7
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Step 8
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Associez et .
Associez les numérateurs sur le dénominateur commun.
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Multipliez par .
Soustrayez de .
Step 9
La solution de l’équation est .
Step 10
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Step 11
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
La valeur exacte de est .
Multipliez par .
Step 12
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Step 13
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Remplacez la variable par dans l’expression.
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
La valeur exacte de est .
Multipliez par .
La réponse finale est .
Step 14
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Step 15
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
La valeur exacte de est .
Multipliez .
Appuyez ici pour voir plus d’étapes...
Multipliez par .
Multipliez par .
Step 16
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Step 17
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Remplacez la variable par dans l’expression.
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
La valeur exacte de est .
Multipliez .
Appuyez ici pour voir plus d’étapes...
Multipliez par .
Multipliez par .
La réponse finale est .
Step 18
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Step 19
Cookies et confidentialité
Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site web.
Plus d’informations