Pré-calcul Exemples

Trouver les racines (zéros) x^4+6x^3+2x^2+54x-63
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Regroupez les termes.
Étape 2.1.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Factorisez à partir de .
Étape 2.1.2.2
Factorisez à partir de .
Étape 2.1.2.3
Factorisez à partir de .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.5
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.5.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.6
Remplacez toutes les occurrences de par .
Étape 2.1.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.7.1
Factorisez à partir de .
Étape 2.1.7.2
Factorisez à partir de .
Étape 2.1.7.3
Factorisez à partir de .
Étape 2.1.8
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.9
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.9.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.9.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.10
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.10.1
Remplacez toutes les occurrences de par .
Étape 2.1.10.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.3.1
Réécrivez comme .
Étape 2.3.2.3.2
Réécrivez comme .
Étape 2.3.2.3.3
Réécrivez comme .
Étape 2.3.2.3.4
Réécrivez comme .
Étape 2.3.2.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.3.6
Déplacez à gauche de .
Étape 2.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Ajoutez aux deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3