Pré-calcul Exemples

Séparer à l'aide de la décomposition en éléments simples (5x^3+32x-4)/((x^2+6)^2)
Étape 1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Annulez le facteur commun.
Étape 1.4.2
Divisez par .
Étape 1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Annulez le facteur commun.
Étape 1.5.1.2
Divisez par .
Étape 1.5.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Factorisez à partir de .
Étape 1.5.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.2.1
Multipliez par .
Étape 1.5.2.2.2
Annulez le facteur commun.
Étape 1.5.2.2.3
Réécrivez l’expression.
Étape 1.5.2.2.4
Divisez par .
Étape 1.5.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Appliquez la propriété distributive.
Étape 1.5.3.2
Appliquez la propriété distributive.
Étape 1.5.3.3
Appliquez la propriété distributive.
Étape 1.5.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1.1
Déplacez .
Étape 1.5.4.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1.2.1
Élevez à la puissance .
Étape 1.5.4.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.4.1.3
Additionnez et .
Étape 1.5.4.2
Déplacez à gauche de .
Étape 1.5.4.3
Déplacez à gauche de .
Étape 1.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Déplacez .
Étape 1.6.2
Déplacez .
Étape 1.6.3
Déplacez .
Étape 2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.4
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.5
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez l’équation comme .
Étape 3.2.2
Remplacez toutes les occurrences de dans par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Multipliez par .
Étape 3.3
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.2.2
Soustrayez de .
Étape 3.3.3
Remplacez toutes les occurrences de dans par .
Étape 3.3.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.1.1
Multipliez par .
Étape 3.3.4.1.2
Additionnez et .
Étape 3.4
Réécrivez l’équation comme .
Étape 3.5
Résolvez le système d’équations.
Étape 3.6
Indiquez toutes les solutions.
Étape 4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , , et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez par .
Étape 5.2
Additionnez et .