Pré-calcul Exemples

Trouver toutes les solutions complexes cos(x)=-( racine carrée de 2)/2
Étape 1
Multipliez chaque terme par un facteur de qui rendra tous les dénominateurs égaux. Dans ce cas, tous les termes ont besoin d’un dénominateur de .
Étape 2
Multipliez l’expression par un facteur de pour créer le plus petit dénominateur commun de .
Étape 3
Déplacez à gauche de .
Étape 4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Divisez par .
Étape 4.2
Multipliez par .
Étape 5
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La valeur exacte de est .
Étape 7
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 8
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Associez et .
Étape 8.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Multipliez par .
Étape 8.3.2
Soustrayez de .
Étape 9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9.4
Divisez par .
Étape 10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier