Pré-calcul Exemples

Trouver les propriétés x^2-3y^2-8x+12y+16=0
Étape 1
Déterminez la forme normalisée de l’hyperbole.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Complétez le carré pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.2.2
Étudiez la forme du sommet d’une parabole.
Étape 1.2.3
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.2.3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1
Factorisez à partir de .
Étape 1.2.3.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2
Annulez le facteur commun.
Étape 1.2.3.2.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2.4
Divisez par .
Étape 1.2.4
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.2.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.2.1.1
Élevez à la puissance .
Étape 1.2.4.2.1.2
Multipliez par .
Étape 1.2.4.2.1.3
Divisez par .
Étape 1.2.4.2.1.4
Multipliez par .
Étape 1.2.4.2.2
Soustrayez de .
Étape 1.2.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.3
Remplacez par dans l’équation .
Étape 1.4
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 1.5
Complétez le carré pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.5.2
Étudiez la forme du sommet d’une parabole.
Étape 1.5.3
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.5.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.2.1.1
Factorisez à partir de .
Étape 1.5.3.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.2.1.2.1
Factorisez à partir de .
Étape 1.5.3.2.1.2.2
Annulez le facteur commun.
Étape 1.5.3.2.1.2.3
Réécrivez l’expression.
Étape 1.5.3.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.2.2.1
Factorisez à partir de .
Étape 1.5.3.2.2.2
Déplacez le moins un du dénominateur de .
Étape 1.5.3.2.3
Multipliez par .
Étape 1.5.4
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.5.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.2.1.1
Élevez à la puissance .
Étape 1.5.4.2.1.2
Multipliez par .
Étape 1.5.4.2.1.3
Divisez par .
Étape 1.5.4.2.1.4
Multipliez par .
Étape 1.5.4.2.2
Additionnez et .
Étape 1.5.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.6
Remplacez par dans l’équation .
Étape 1.7
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 1.8
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
Additionnez et .
Étape 1.8.2
Soustrayez de .
Étape 1.9
Inversez le signe de chaque terme de l’équation afin que le terme du côté droit soit positif.
Étape 1.10
Divisez chaque terme par pour rendre le côté droit égal à un.
Étape 1.11
Simplifiez chaque terme de l’équation afin de définir le côté droit égal à . La forme normalisée d’une ellipse ou hyperbole nécessite que le côté droit de l’équation soit .
Étape 2
C’est la forme d’une hyperbole. Utilisez cette forme pour déterminer les valeurs utilisées pour déterminer les sommets et les asymptotes de l’hyperbole.
Étape 3
Faites correspondre les valeurs dans cette hyperbole avec celles de la forme normalisée. La variable représente le décalage x par rapport à l’origine, représente le décalage y par rapport à l’origine, .
Étape 4
Le centre d’une hyperbole suit la forme de . Remplacez les valeurs de et .
Étape 5
Déterminez , la distance du centre à un foyer.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la distance du centre à un foyer de l’hyperbole en utilisant la formule suivante.
Étape 5.2
Remplacez les valeurs de et dans la formule.
Étape 5.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Élevez à la puissance .
Étape 5.3.1.2
Appliquez la règle de produit à .
Étape 5.3.1.3
Élevez à la puissance .
Étape 5.3.2
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Utilisez pour réécrire comme .
Étape 5.3.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.2.3
Associez et .
Étape 5.3.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.4.1
Annulez le facteur commun.
Étape 5.3.2.4.2
Réécrivez l’expression.
Étape 5.3.2.5
Évaluez l’exposant.
Étape 5.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Multipliez par .
Étape 5.3.3.2
Additionnez et .
Étape 5.3.3.3
Réécrivez comme .
Étape 5.3.3.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6
Déterminez les sommets.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Le premier sommet d’une hyperbole peut être déterminé en ajoutant à .
Étape 6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.3
Le deuxième sommet d’une hyperbole peut être déterminé en soustrayant à .
Étape 6.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.5
Les sommets d’une hyperbole suivent la forme de . Les hyperboles ont deux sommets.
Étape 7
Déterminez les foyers.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le premier foyer d’une hyperbole peut être déterminé en ajoutant à .
Étape 7.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.3
Le deuxième foyer d’une hyperbole peut être déterminé en soustrayant à .
Étape 7.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.5
Les foyers d’une hyperbole suivent la forme de . Les hyperboles ont deux foyers.
Étape 8
Déterminez l’excentricité.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Déterminez l’excentricité en utilisant la formule suivante.
Étape 8.2
Remplacez les valeurs de et dans la formule.
Étape 8.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Élevez à la puissance .
Étape 8.3.1.2
Appliquez la règle de produit à .
Étape 8.3.1.3
Élevez à la puissance .
Étape 8.3.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.4.1
Utilisez pour réécrire comme .
Étape 8.3.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 8.3.1.4.3
Associez et .
Étape 8.3.1.4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.4.4.1
Annulez le facteur commun.
Étape 8.3.1.4.4.2
Réécrivez l’expression.
Étape 8.3.1.4.5
Évaluez l’exposant.
Étape 8.3.1.5
Multipliez par .
Étape 8.3.1.6
Additionnez et .
Étape 8.3.1.7
Réécrivez comme .
Étape 8.3.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 8.3.2
Divisez par .
Étape 9
Déterminez le paramètre focal.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Déterminez la distance du paramètre focal l’hyperbole en utilisant la formule suivante.
Étape 9.2
Remplacez les valeurs de et dans la formule.
Étape 9.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1.1
Factorisez à partir de .
Étape 9.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1.2.1
Factorisez à partir de .
Étape 9.3.1.2.2
Annulez le facteur commun.
Étape 9.3.1.2.3
Réécrivez l’expression.
Étape 9.3.2
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.1
Utilisez pour réécrire comme .
Étape 9.3.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.3.2.3
Associez et .
Étape 9.3.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.4.1
Annulez le facteur commun.
Étape 9.3.2.4.2
Réécrivez l’expression.
Étape 9.3.2.5
Évaluez l’exposant.
Étape 10
Les asymptotes suivent la forme car cette hyperbole ouvre vers le haut et vers le bas.
Étape 11
Simplifiez pour déterminer la première asymptote.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Supprimez les parenthèses.
Étape 11.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Multipliez par .
Étape 11.2.2
Appliquez la propriété distributive.
Étape 11.2.3
Associez et .
Étape 11.2.4
Associez et .
Étape 11.2.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.5.1
Déplacez à gauche de .
Étape 11.2.5.2
Placez le signe moins devant la fraction.
Étape 12
Simplifiez pour déterminer la deuxième asymptote.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Supprimez les parenthèses.
Étape 12.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Multipliez par .
Étape 12.2.2
Appliquez la propriété distributive.
Étape 12.2.3
Associez et .
Étape 12.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.4.1
Multipliez par .
Étape 12.2.4.2
Associez et .
Étape 13
Cette hyperbole a deux asymptotes.
Étape 14
Ces valeurs représentent les valeurs importantes pour représenter graphiquement et analyser une hyperbole.
Centre :
Sommets :
Foyers :
Excentricité :
Paramètre focal :
Asymptotes : ,
Étape 15