Pré-calcul Exemples

Resolva para t 0.25(t)=t/(3t^2+1)
Étape 1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez en multipliant.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.1.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Déplacez .
Étape 2.2.2.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.2.1
Élevez à la puissance .
Étape 2.2.2.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.1.3
Additionnez et .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Annulez le facteur commun.
Étape 2.3.1.2
Réécrivez l’expression.
Étape 3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.2.3.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.