Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez en multipliant.
Étape 2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.1.2
Simplifiez l’expression.
Étape 2.2.1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Simplifiez chaque terme.
Étape 2.2.2.1
Multipliez par en additionnant les exposants.
Étape 2.2.2.1.1
Déplacez .
Étape 2.2.2.1.2
Multipliez par .
Étape 2.2.2.1.2.1
Élevez à la puissance .
Étape 2.2.2.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.1.3
Additionnez et .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Annulez le facteur commun de .
Étape 2.3.1.1
Annulez le facteur commun.
Étape 2.3.1.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Factorisez le côté gauche de l’équation.
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Factorisez.
Étape 3.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 3.2.3.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.