Pré-calcul Exemples

Transformer en un intervalle (x+6)(x^2+16)(1-x)<=0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Réécrivez comme .
Étape 3.2.3.2
Réécrivez comme .
Étape 3.2.3.3
Réécrivez comme .
Étape 3.2.3.4
Réécrivez comme .
Étape 3.2.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.3.6
Déplacez à gauche de .
Étape 3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.2.2.2.2
Divisez par .
Étape 4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.3.1
Divisez par .
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Utilisez chaque racine pour créer des intervalles de test.
Étape 7
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.1.2
Remplacez par dans l’inégalité d’origine.
Étape 7.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 7.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.2.2
Remplacez par dans l’inégalité d’origine.
Étape 7.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 7.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.3.2
Remplacez par dans l’inégalité d’origine.
Étape 7.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 7.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 8
La solution se compose de tous les intervalles vrais.
ou
Étape 9
Convertissez l’inégalité en une notation d’intervalle.
Étape 10