Pré-calcul Exemples

Resolva para a 1/(2a)+(a-1)/(a^2)=1/a
Étape 1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 1.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 1.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 1.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 1.7
Le facteur pour est lui-même.
se produit fois.
Étape 1.8
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 1.9
Le facteur pour est lui-même.
se produit fois.
Étape 1.10
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 1.11
Multipliez par .
Étape 1.12
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Factorisez à partir de .
Étape 2.2.1.2.2
Annulez le facteur commun.
Étape 2.2.1.2.3
Réécrivez l’expression.
Étape 2.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Factorisez à partir de .
Étape 2.2.1.3.2
Annulez le facteur commun.
Étape 2.2.1.3.3
Réécrivez l’expression.
Étape 2.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.5
Associez et .
Étape 2.2.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.6.1
Annulez le facteur commun.
Étape 2.2.1.6.2
Réécrivez l’expression.
Étape 2.2.1.7
Appliquez la propriété distributive.
Étape 2.2.1.8
Multipliez par .
Étape 2.2.2
Additionnez et .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2
Associez et .
Étape 2.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Factorisez à partir de .
Étape 2.3.3.2
Annulez le facteur commun.
Étape 2.3.3.3
Réécrivez l’expression.
Étape 3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Ajoutez aux deux côtés de l’équation.